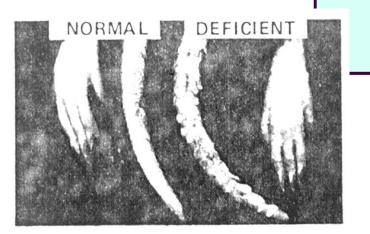


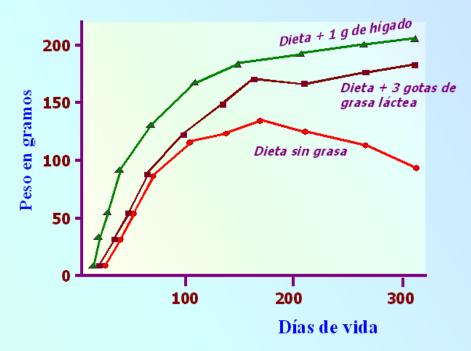
DHA beneficios e importancia en el ciclo vital

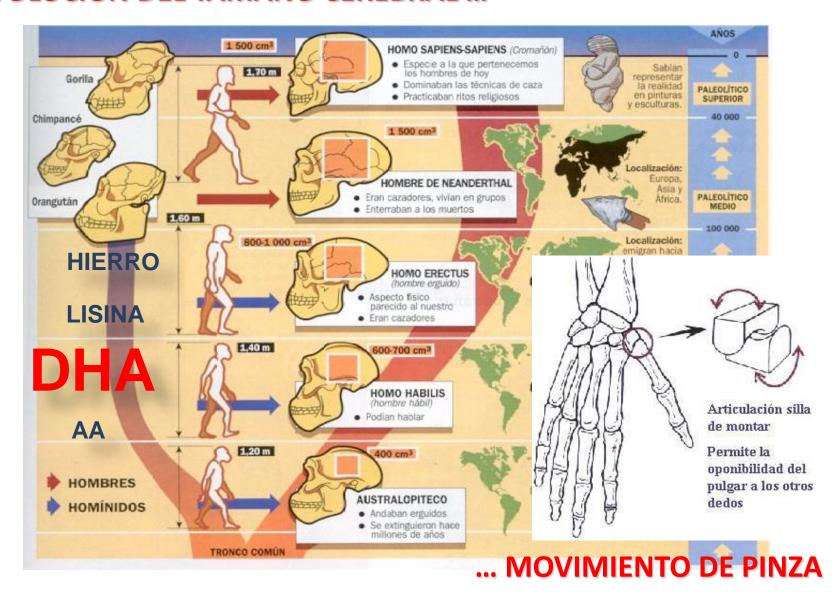
Prof. Rodrigo Valenzuela B.

Departamento de Nutrición

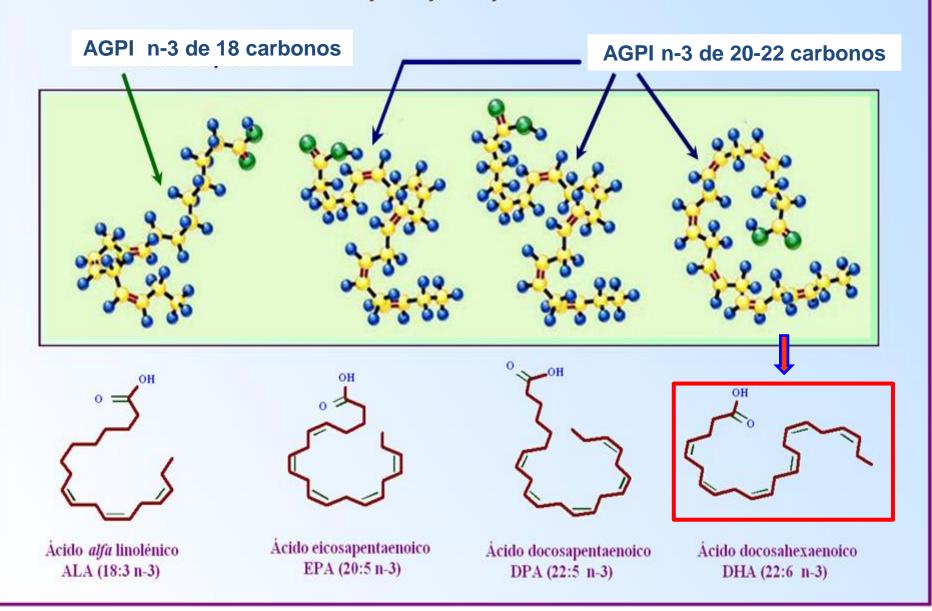
Facultad de Medicina


Universidad de Chile

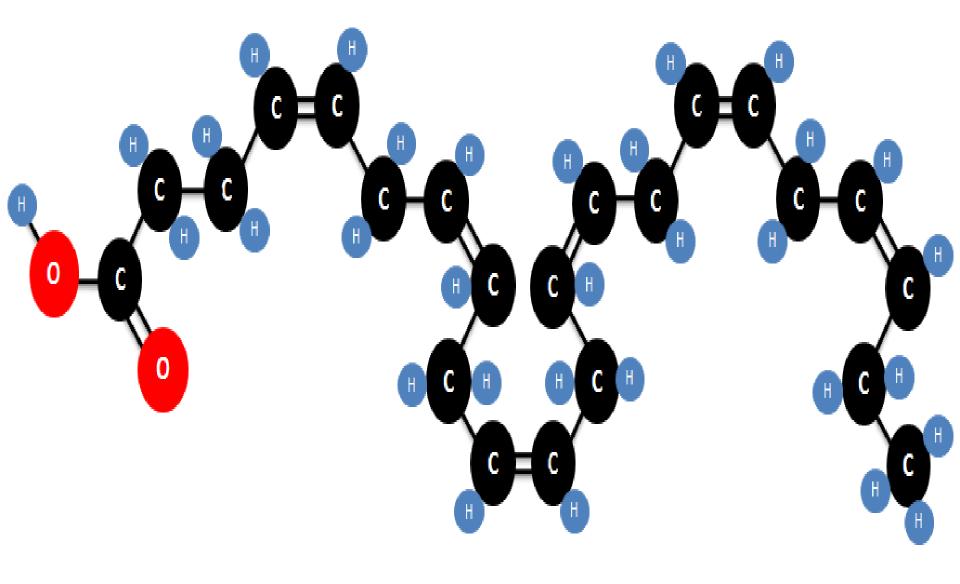

EL DESCUBRIMIENTO DE LA ESENCIALIDAD DE LAS GRASAS


GEORGE O BURR (1896 – 1958)

Esencialidad de los ácidos grasos (Burr y Burr, 1929)


EVOLUCION DEL TAMAÑO CEREBRAL ...

Ácidos grasos comunes en la dieta


Tipo de ácido graso	Número de Carbono/ dobles enlaces
Ácidos grasos saturados	
Ácido mirístico	C14/0
Ácido esteárico	C18/0
Ácidos grasos monoinsatutados	
Ácido palmitoléico	C16/1
Ácido oleico	C18/1
Ácidos grasos poliinsatutados	
Ácido linoleico	C18/2
Ácido linolénico	C18/3
Ácido α-linolénico	C18/3
Ácido γ-linolénico	C18/3
Ácido araquidónico	C20/4
Ácido eicosapentaenoico	C20/5
Ácido docosahexaenoico	C22/6

Los más importante ácidos grasos poliinsaturados (AGPI): ALA, EPA, DPA, DHA

¿Qué es el DHA?

- Ácido docosahexaenoico (DHA) también conocido como cervónico
- Es un ácido graso altamente insaturado, que presenta seis dobles enlaces en su cadena hidrocarbonada (C22:6, \triangle -4, 7, 10, 13, 16, 19)
- Presenta un muy bajo punto de fusión (-44° C) "líquido a temperatura ambiente"
- Su características físico químicas le otorgan una gran flexibilidad a este y también a las estructuras donde se encuentra
- Es un ácido graso que pertenece a la familia de los ácidos grasos omega-3 (n-3 = ω -3)
- Forman parte integral de los fosfolípidos de las membranas celulares

Ácido docosahexaenoico (C22:6 ω-3, Δ-4,7,10,13,16,19; DHA)

Antecedentes histórico de los AG n-3 y n-6

Grandes aportes al estudio de los ácidos grasos poliinsaturados

1929: George y Mildred Burr plantean la importancia de los lípidos en el crecimiento y desarrollo de ratas

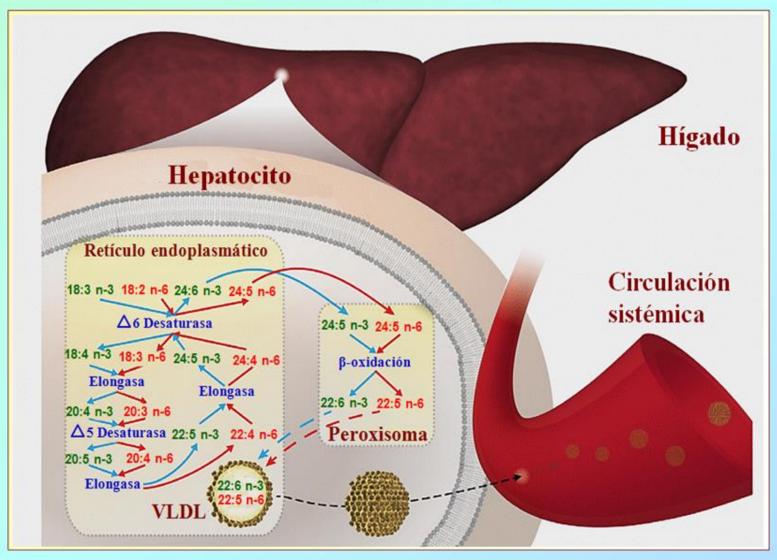
1963: Arild Hansen y cols, demuestran que el ser humano no es capaz de sintetizar ciertos AGPI (ácidos grasos esenciales)

1966: Branner Realiza los estudios de desaturación de ácidos grasos

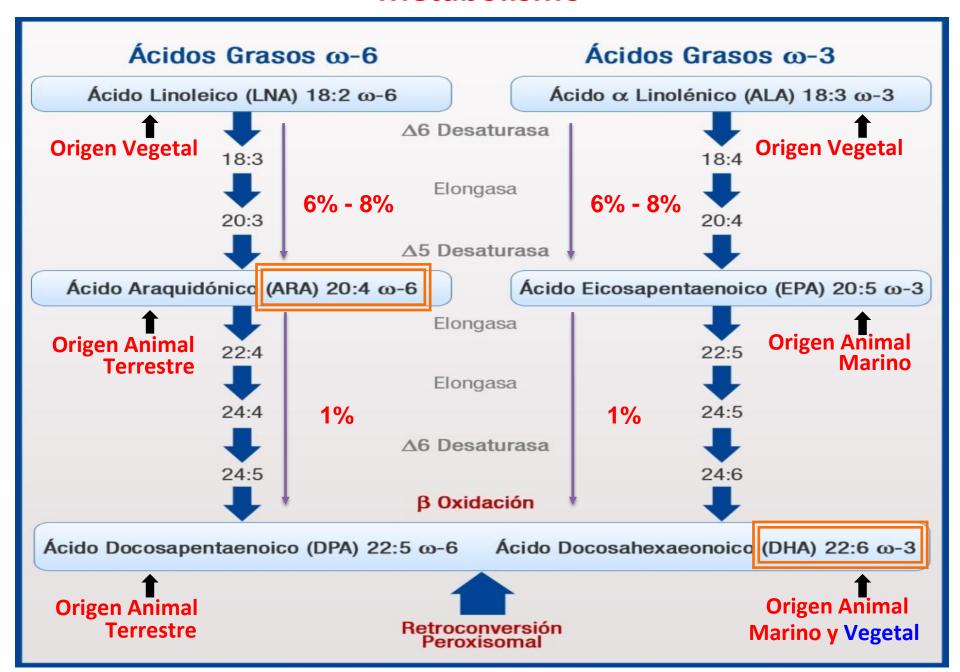
1969: Dyerberg y Bang demuestran el rol cardio protector de los AGPICL n-3 marinos

1970: Bazan y Joel identifican al DHA y AA en tejido cerebral

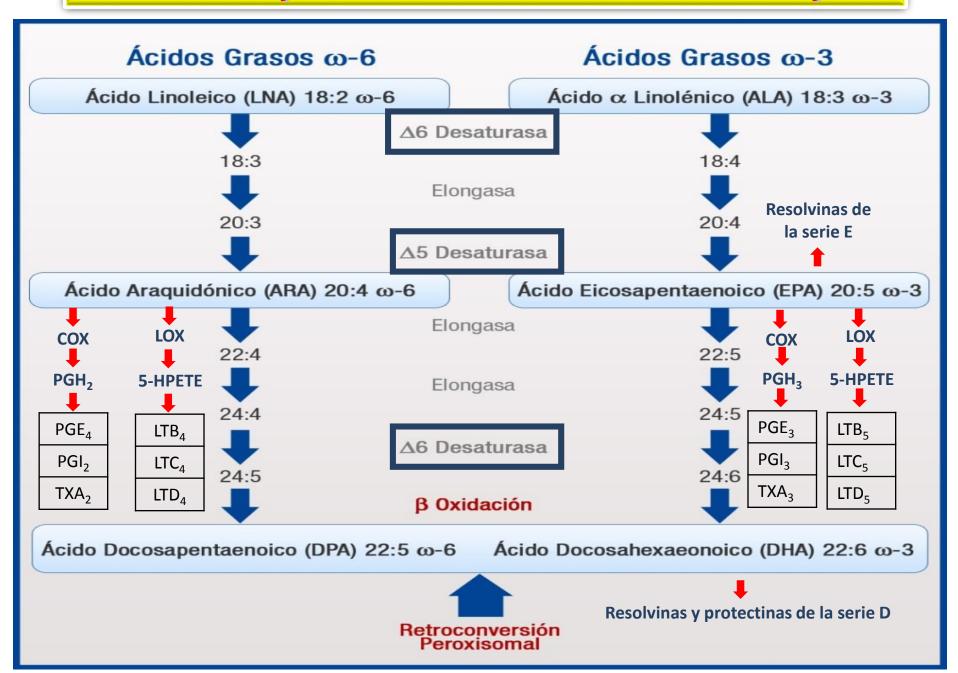
1970 – 1980 y 1990: Crawford, Cunnane y Uauy establecen la importancia del DHA en el desarrollo cerebral

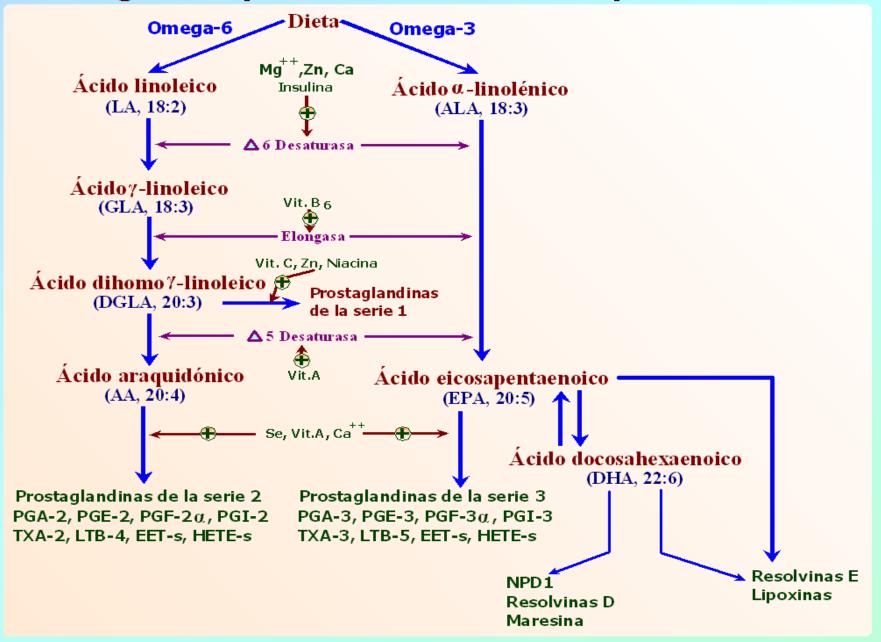

1983: Holman y cols, reportan el primer caso de deficiencia de AGPI-n3 en una niña

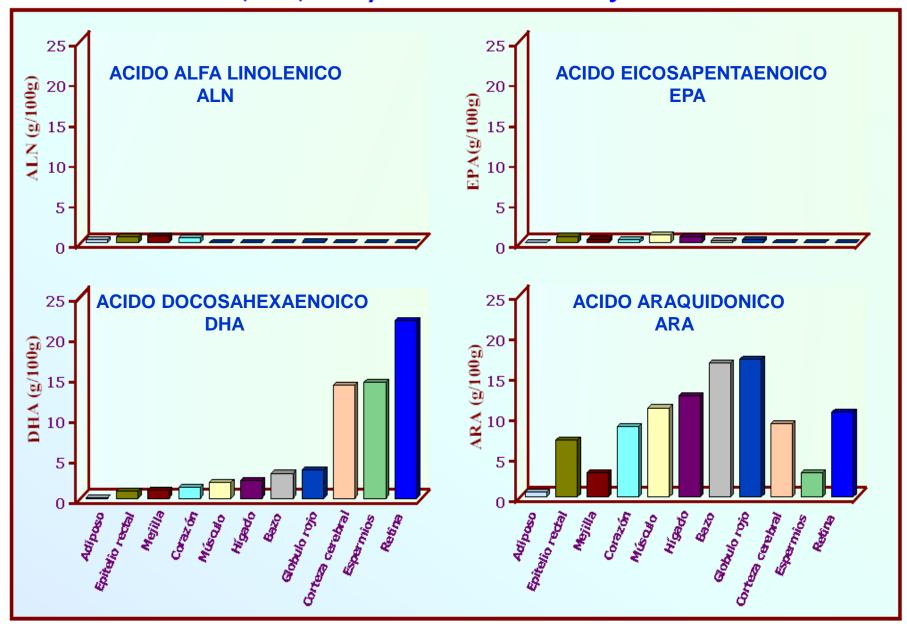
2003: Marcheselli y cols, identifican a la Neuroprotectina D-1


2006: Simopoulos, importancia de la relación n-6/n-3 en las enfermedades crónicas no transmisibles

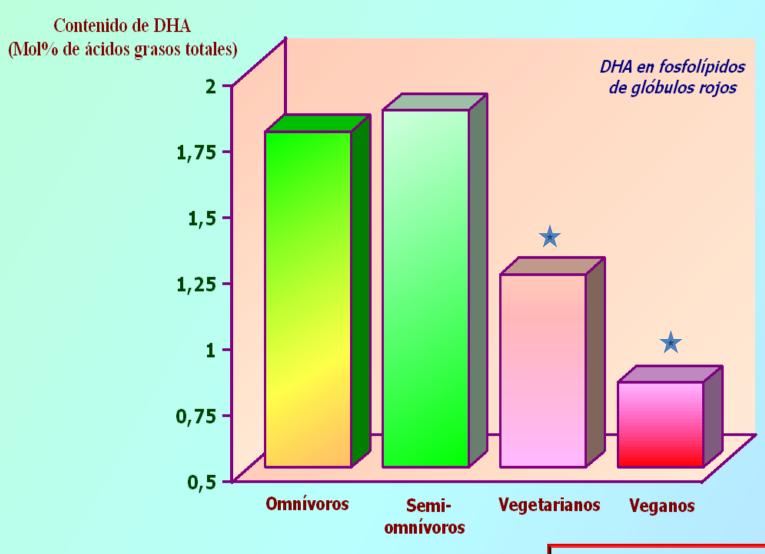
2013: Montgomery y Richardson, reportan los efectos beneficiosos del DHA sobre las capacidades cognitivas en niños


Transformación metabólica hepática de los ácidos grasos n -6 y n -3

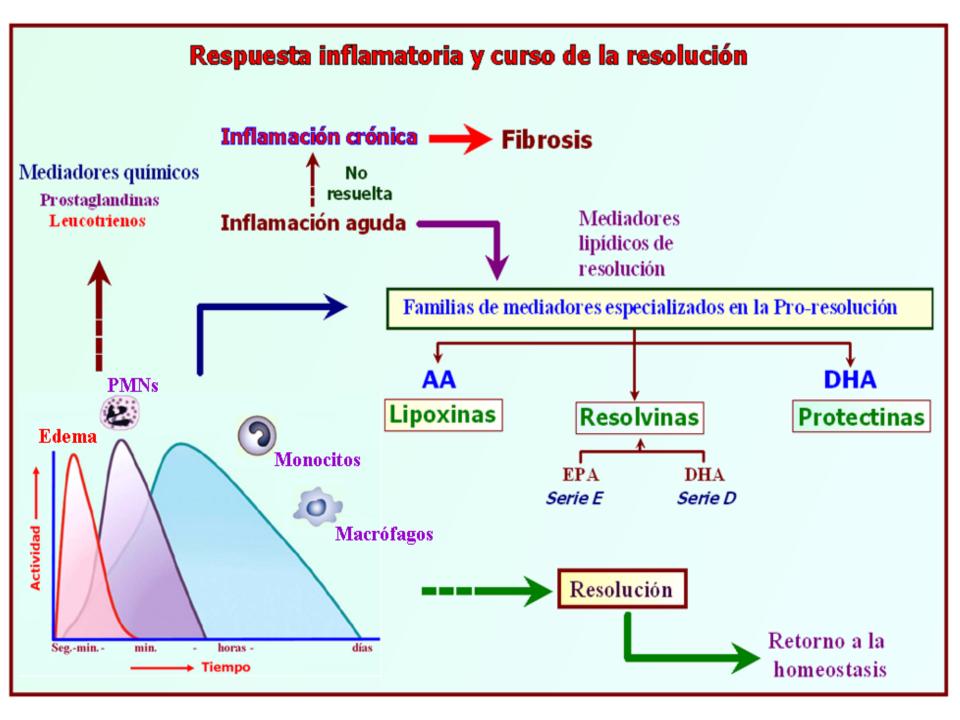

Metabolismo

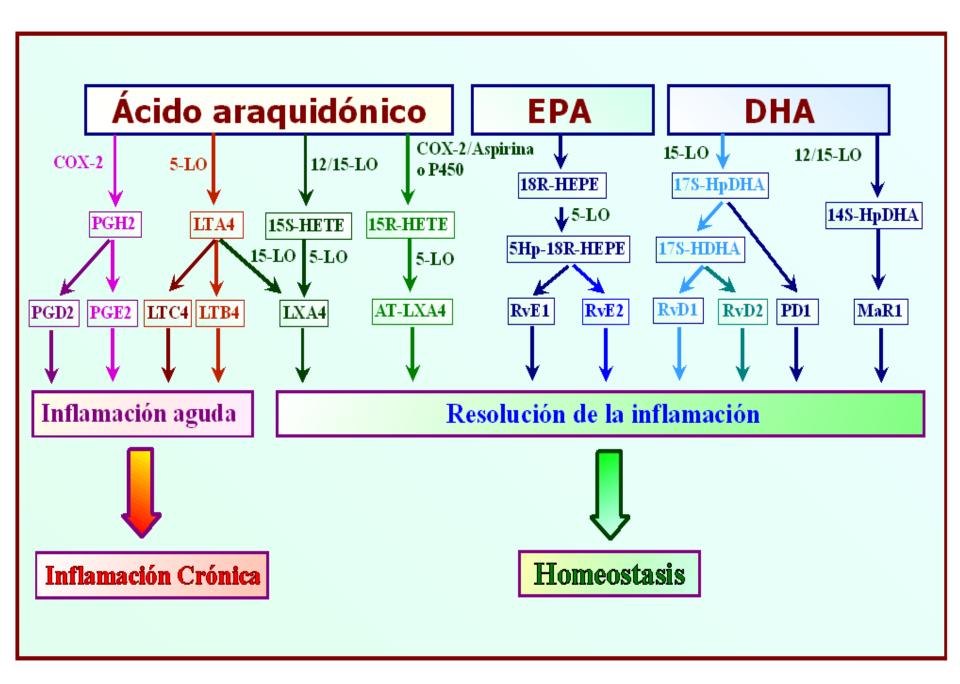

Metabolismo y derivados bio-activos de los AG n-6 y n-3

Metabolismo de los ácidos grasos esenciales: Regulación por factores nutricionales y metabólicos

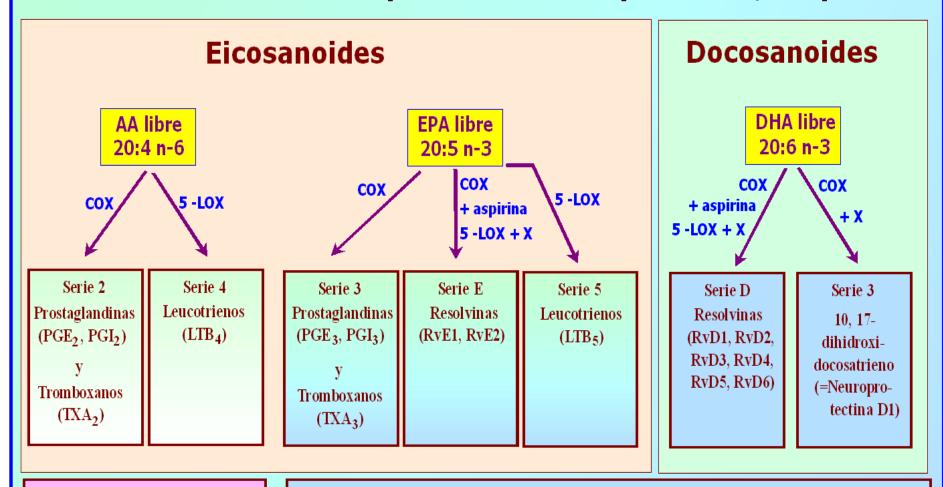


Distribución de ALN, EPA, DHA y ARA en diferentes tejidos del humano adulto



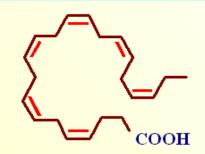

Nivel de DHA en relación con los hábitos dietarios

Dieta habitual



Importancia de la calidad de las proteínas de la dieta

Biosíntesis de eicosanoides y de docosanoides a partir de AA, EPA y DHA



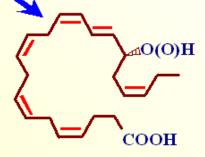
Pro inflamatorias

Menos inflamatorias o antiinflamatorias

+ X= corresponde a otras reacciones

Síntesis de resolvinas de la serie D

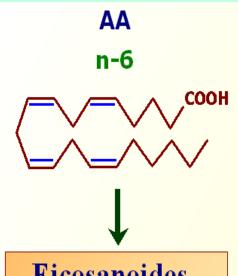
Ácido docosahexaenoico (DHA, 22:6 n-3)


15- LOX

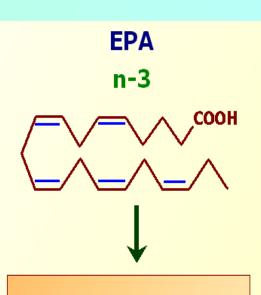
17S-Resolvina D1-4

17S-(Neuro) Protectina D1

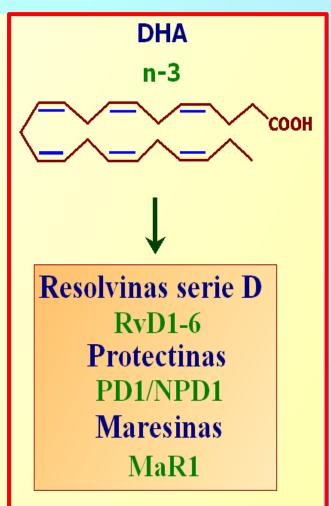
Acetilación por COX-2

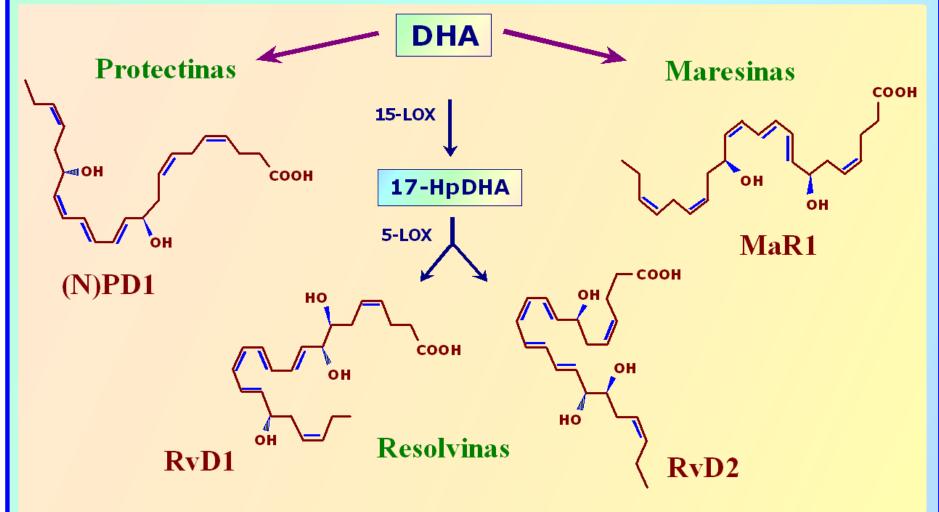


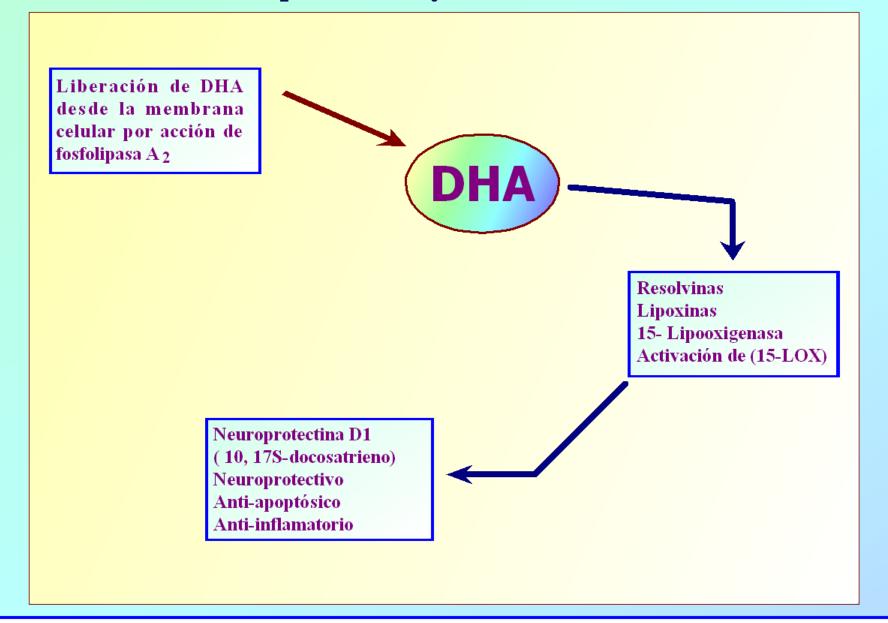
17R-H(p) (DHA)



17R-Resolvina D1-4


17R-Protectina D1


Eicosanoides
Prostaglandinas
Leucotrienos
Lipoxinas


Resolvinas serie E RvE1, RvE2. RvE3

Estructuras de Protectinas, Resolvinas y Maresinas generadas a partir del metabolismo del DHA

Efectos neuroprotectores y antiinflamatorios del DHA

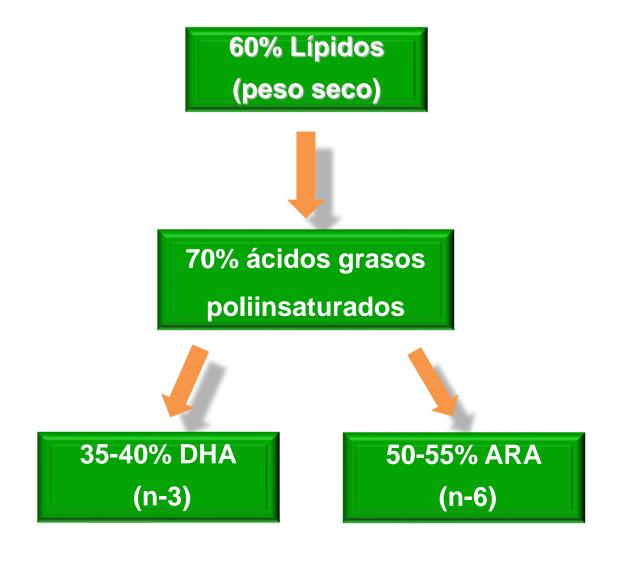
DHA y Salud

- Embarazo y primeros dos años de vida (Desarrollo Cerebral)
- Memoria y aprendizaje
- Inflamación
- Cáncer
- Daño por isquemia reperfusión (Cerebral)
- Depresión
- Deterioro cognitivo y demencia
- Enfermedades neurodegenerativas (Enf. Alzheimer)

DHA es un componente estructural en membranas del cerebro y del ojo

97% de los ácidos grasos n-3 del cerebro

93% de los ácidos grasos n -3 del ojo

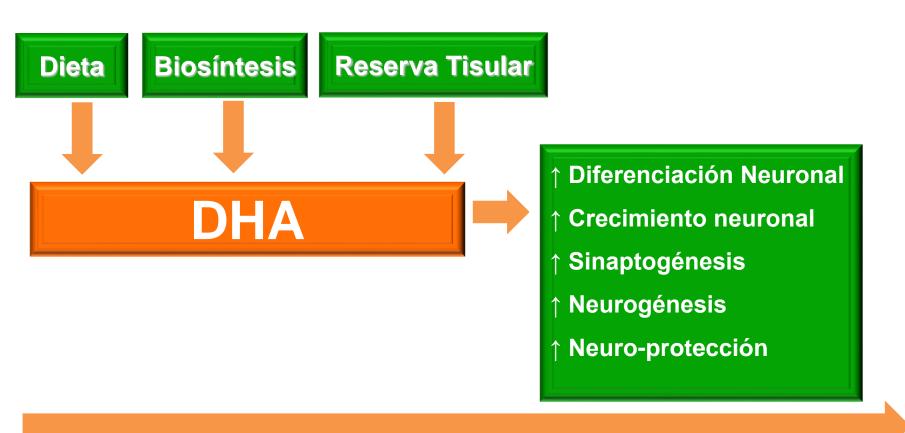

Importancia Neuro – Fisiológica del DHA

- Sistema nervioso, especialmente cerebro: 60% del peso seco corresponde a lípidos (fosfolípidos)
- Desarrollo cerebral, último trimestre del embarazo y primeros tres años de vida
- DHA rol fundamental en la estructura y funcionalidad del tejido nervioso
- Estrecha relación entre contenido de DHA en cerebro y mayor capacidad de aprendizaje y adaptación
- DHA y establecimiento de circuitos neuronales
- DHA estructura y funcionamiento cerebral:

Membranas neuronales

Regulación de la expresión de genes cerebrales

Composición lipídica del cerebro

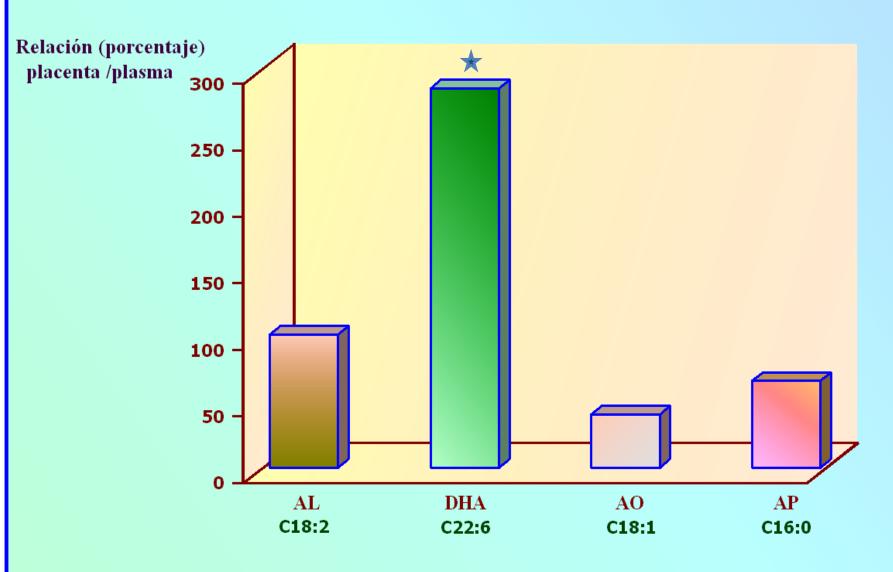


Velocidad de incorporación de ácidos grasos en el cerebro y cerebelo fetal (mg / semana)

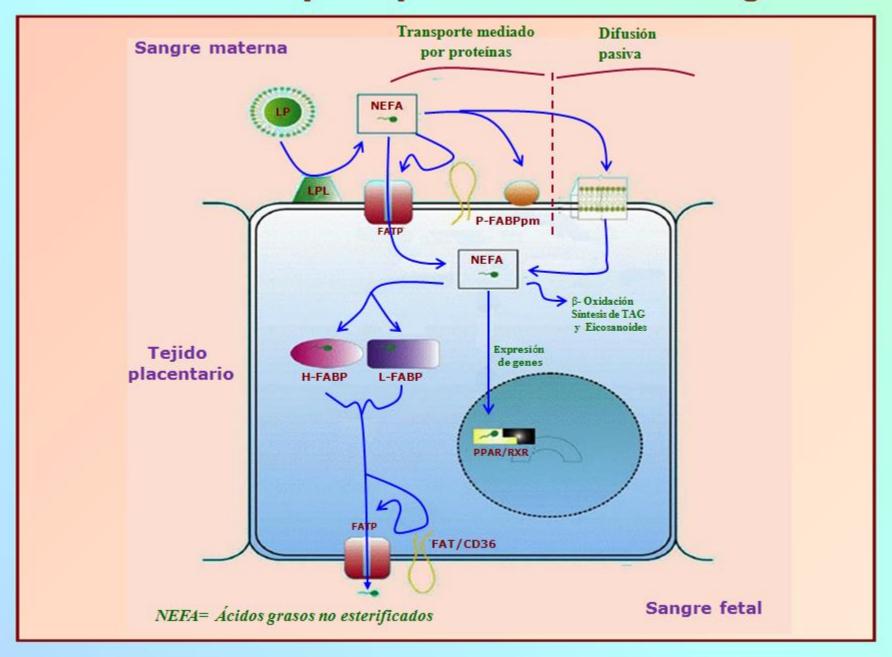
Ácidos grasos	Intra-útero (26-41 semanas)	Extra-útero (0-10 semanas)
AG n-9 (AO)	31,2	65,5
AG n-6 (ARA)	32,8	82,4
AG n-3 (DHA)	14,6	5,5

La relevancia de la alimentación durante el embarazo

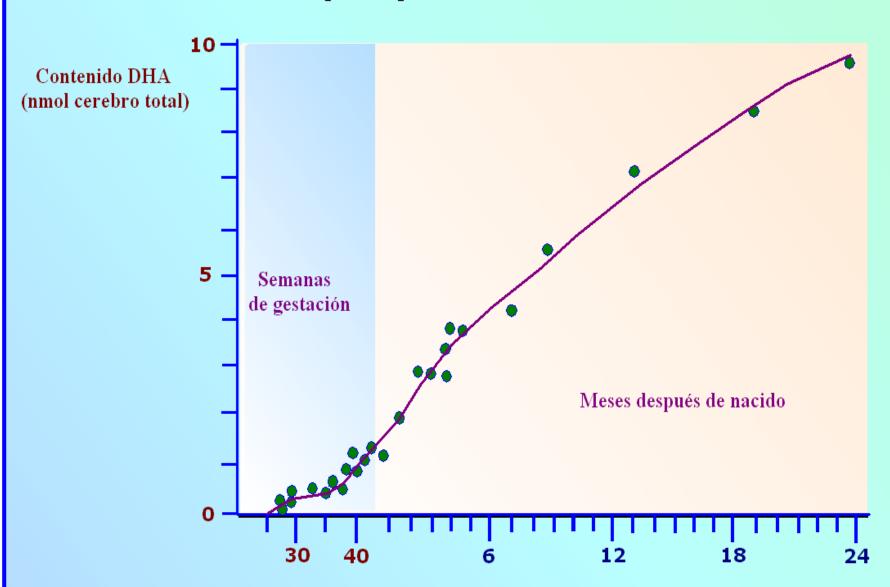
Participación del DHA en el desarrollo del sistema nervioso

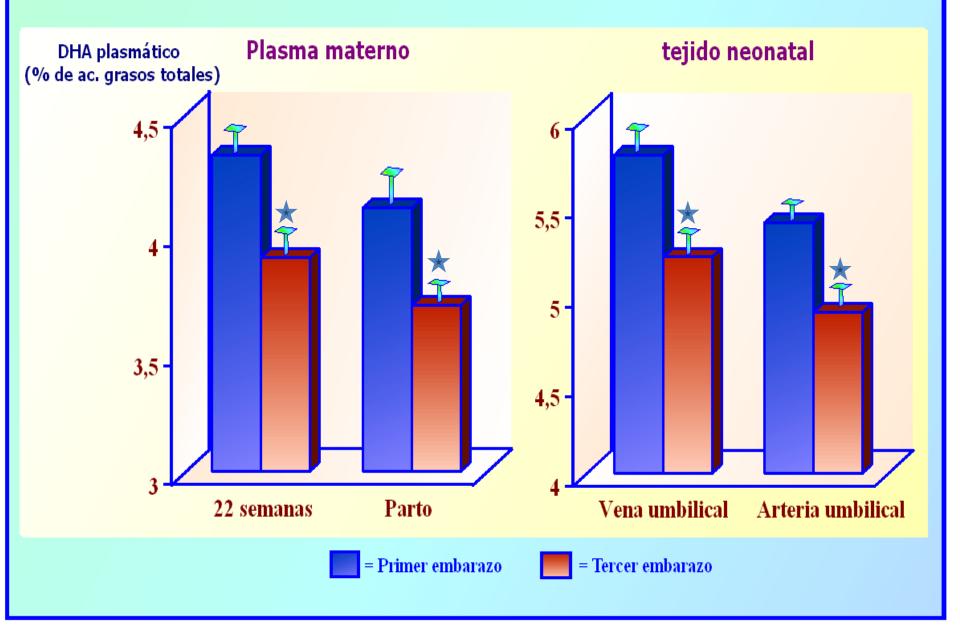

3° Trimestre del Embarazo

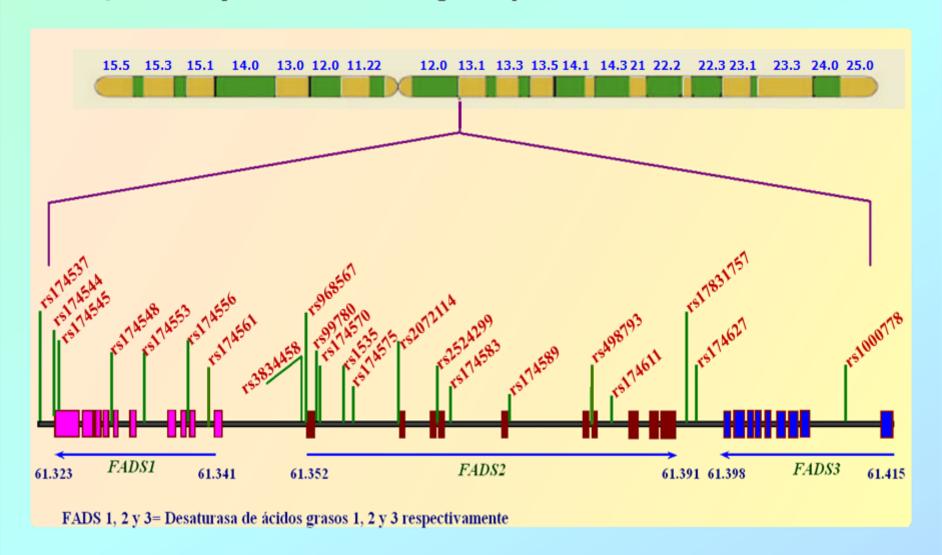
Lactancia

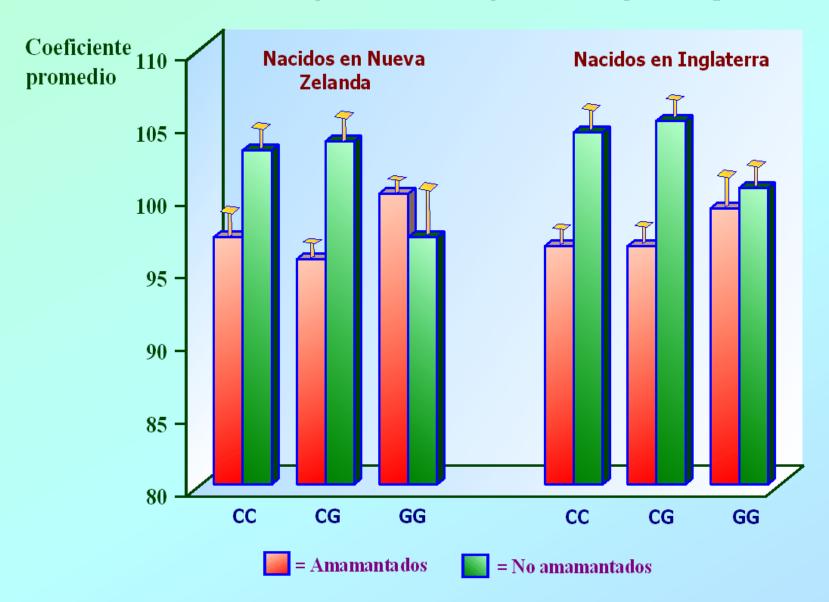

Desarrollo cerebral y establecimiento de circuitos neuronales

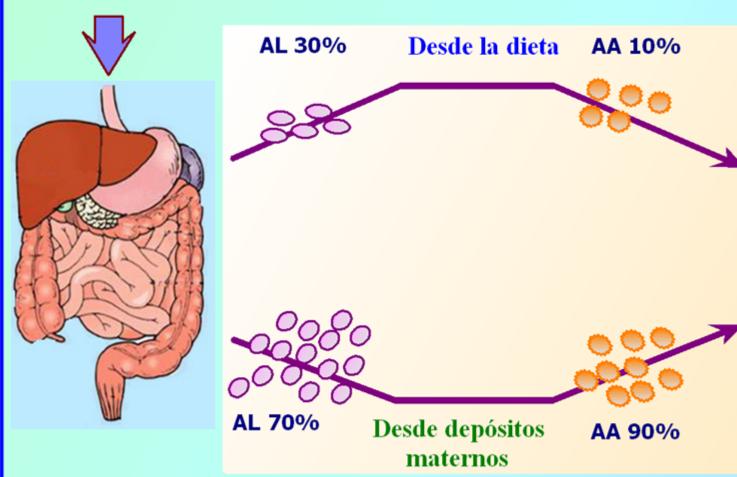
- Formación del tubo neural (neuroecteroderma) 3° 4° sem gest
- Formación de los hemisferios (etapa proencefálica) 5° -10° sem gest
- Activa neurogénesis
- Proliferación neuronal
- Diferenciación neuronal
- Neuronas (propiamente tal) y glías (astrocitos y oligodendrocitos)
- 200.000 neuronas/minuto
- Migración de zonas ventriculares (centrales) a zonas periféricas (neocorteza)
- Factores neurotróficos
- Sinaptogénesis

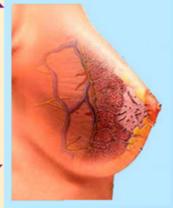

Distribución de ácidos grasos marcados entre placenta y plasma materno administrados 4 horas antes del parto

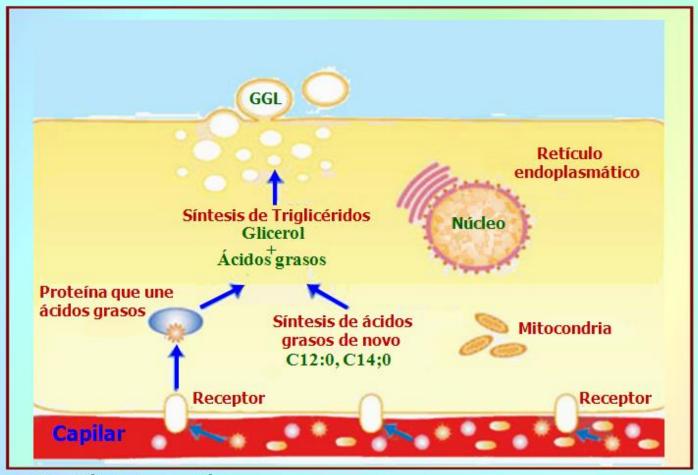

Modelo del transporte placentario de ácidos grasos


Acumulación de ácido docosahexaenoico (DHA) en el cerebro fetal


Nivel de DHA en embarazos exitosos


Organización del gen FADS en el cromosoma 11 de humanos mostrando exones/intrones y la ubicación de algunos polimorfismos de un solo nucleótido


Relación entre lactancia y coeficiente intelectual promedio en individuos con polimorfismo (rs 174575) en el gen FADS2


Ácidos grasos dietario y de reserva en la síntesis de leche materna

Síntesis de novo a partir de ácidos grasos de cadena media

Síntesis de grasa de leche materna en células alveolares

GGL=Glóbulo de grasa láctea

Importancia del consumo de DHA durante el embarazo

En la madre

En el hijo

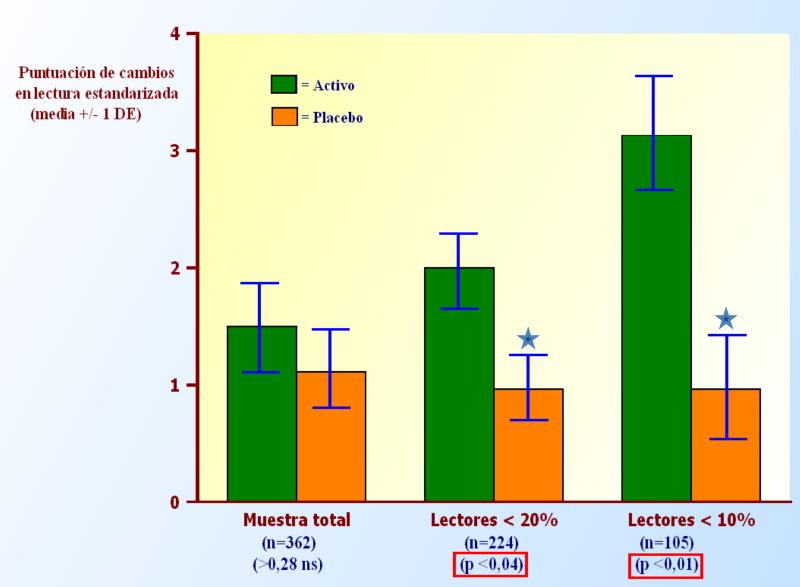
Permite embarazos más prolongados
Disminuye la insulino resistencia y la diabetes gestacional
Disminuye el riesgo de depresión post - parto

Mejora la agudeza visual y percepción de los colores
Puede aumentar hasta en 4 puntos el Cl
Mejorar la capacidad de aprendizaje y de memorización
Disminuye la incidencia de déficit atencional

DHA y aprendizaje

- Estudios realizados en ratas, ratones primates y humanos
- En animales: Correlación entre mayor incorporación de DHA en Hipocampo y Corteza Cerebral, y mejor desempeño en pruebas en laberintos (espacio ciego, agua de Morris y caja de Skiner)
- Intervenciones pre-natales
- Determinación en los niveles de DHA en diferentes zonas del cerebro
- En humanos se ha demostrado: mayor aprendizaje y desarrollo psicomotor
- Aplicación de test: Kaufman, escalas de Bayley, Brunet-Lézine (desarrollo psicomotor), Fagan (inteligencia), Willatts y capacidad para resolver problemas
- Intervenciones post-natales
- Determinaciones en eritrocitos*

DHA: efectos positivos en las capacidades cognitivas y el comportamiento


Docosahexaenoic Acid for Reading, Cognition and Behavior in Children Aged 7–9 Years: A Randomized, Controlled Trial (The DOLAB Study)

- Mejoras significativas en la lectura y el comportamiento de los niños
 - Dosis de DHA utilizada: 600 mg/día (microalga), sin efectos secundarios adversos

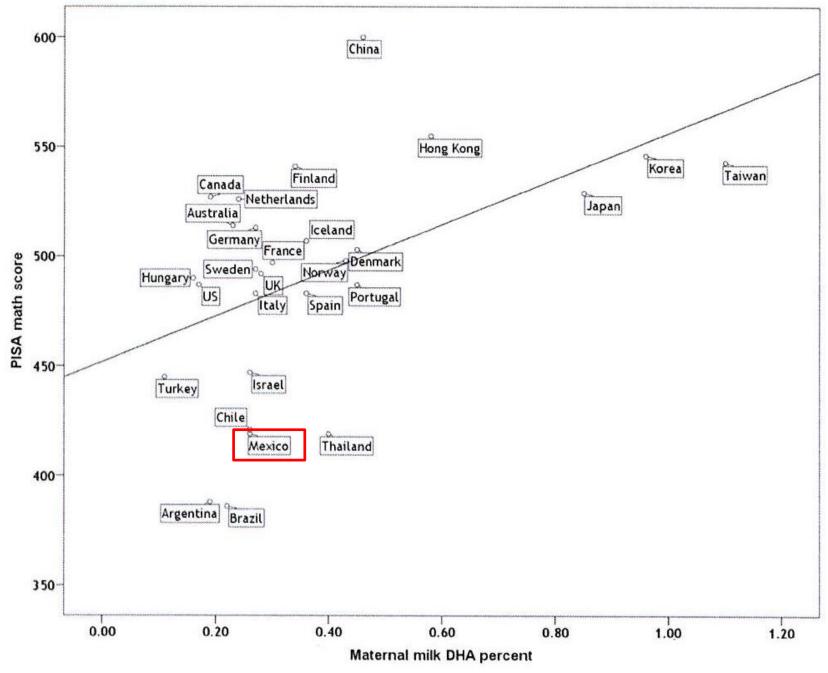
Alexandra J. Richardon, Jennifer R, Burton, Richard P, Sewell et al.

Plos ONE 2012

Cambios en puntaje de lectura entre línea base y post intervención

Bajos niveles de AGPICL n-3 en sangre y mal rendimiento cognitivo y conducta

Low blood long chain omega-3 fatty acid in UK children are associated with poor cognitive performance and behavior: a cross-sectional analysis from the DOLAB study

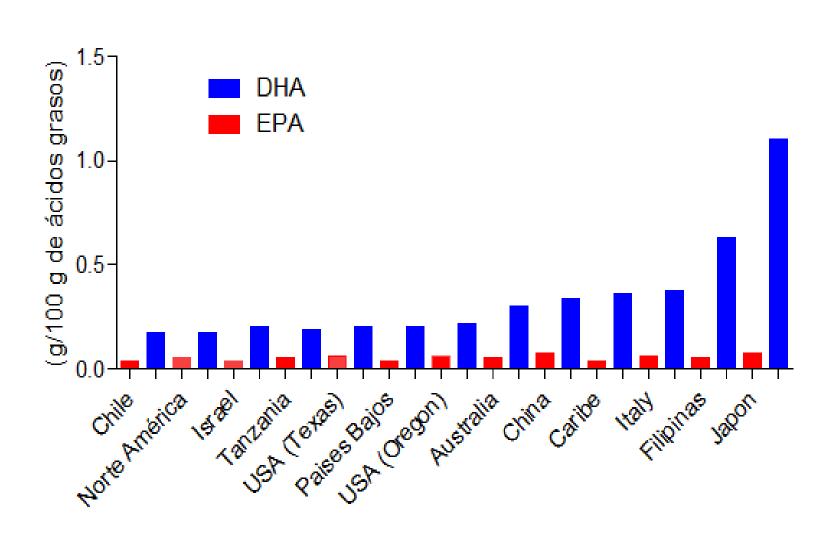

- DHA (1.9%) y EPA (0.55%) en sangre (total de ácidos grasos)
- DHA presenta la mayor variación
- Menores niveles de DHA se asociaron con:
- 1. Una pobre capacidad de lectura y memoria
- 2. Mayor oposición y cuestionamiento a los padres

Paul Montgomery, Jennifer R. Burton, Richard P, Sewell et al. Plos ONE 2013

Niveles de DHA en Leche materna y rendimiento cognitivo

- Maternal milk DHA content predicts cognitive performance in a sample of 28 nations
- Niveles de DHA en leche materna (índice de disponibilidad)
- Programa para la Evaluación Internacional de Alumnos (PISA) 2009
- Estudio realizado en 28 países demostró que los niveles de DHA en leche materna contribuyen de manera muy significativa en las calificaciones obtenidas en la prueba PISA de matemáticas (β = 0,462, P = 0,006)
- Indicador mayor en magnitud que el producto interno bruto per cápita y el gasto en educación por alumno.
- El pescado influiría en forma positiva
- La grasa total influiría en forma negativa

W.D. Lassek and S.J.C. Gaulin. Maternal and Child Nutrition. 2013



W.D. Lassek and S.J.C. Gaulin. Maternal and Child Nutrition. 2013

Niveles de DHA en Leche materna y rendimiento cognitivo

- Los niveles de DHA en la leche materna explican más del 20% de la varianza en el rendimiento en una prueba cognitiva internacional.
- La varianza explicada por los niveles de DHA en leche materna es la única que no se explica por variables socio – económicas.
- El mejor predictor dietario respecto a los niveles de DHA en leche materna es el consumo de pescado.

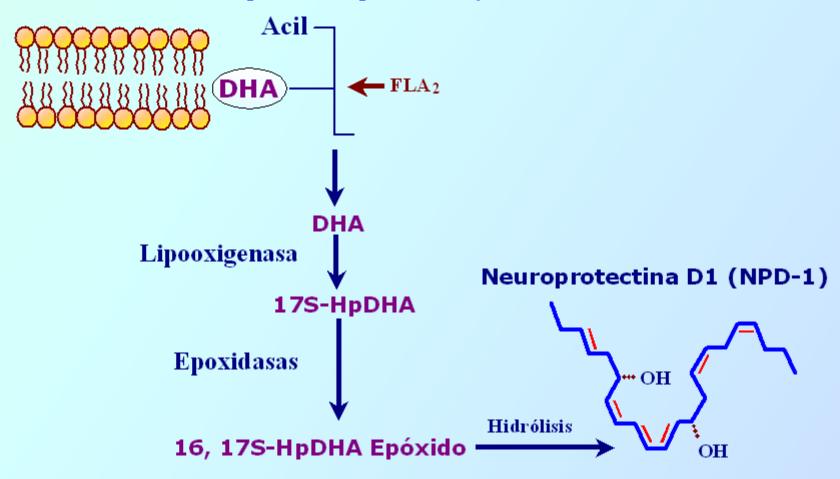
Niveles de EPA y DHA en leche materna de diferentes países

DHA y Disminución de la esteatosis hepática en niños

Docosahexaenoic acid supplementation decreases liver fat content in children with non-alcoholic fatty liver disease: double-blind randomised controlled clinical trial

- Evaluar si la la suplementación con DHA reduce el contenido de grasa en niños con enfermedad por hígado graso no alcohólica (EHGNA) suplementación con DHA.
- Ensayo aleatorio controlado con suplementación de DHA (250 y 500 mg/día) versus placebo en 60 niños con EHGNA (biopsia) (20 niños por grupo)
- Resultados (Después de 6 meses se observó)

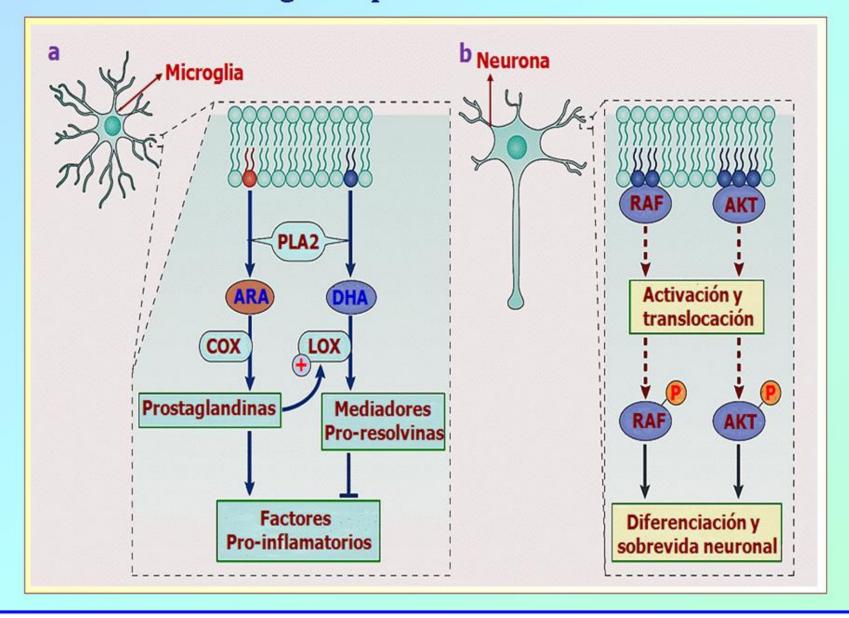
Una disminución significativa de la acumulación de grasa en el hígado, y un incremento en los niveles de DHA, particularmente en el grupo que consumío 500 mg/día


Nobili V, Bedogni G, Alisi A, et al.. Arch Dis Child. 2011;96:350-3.

Nutrientes y/o ingredientes funcionales con efectos positivos en enfermedades demenciales

Ingrediente funcional	Efecto metab óli co/función	Efecto clínico	Síntomas o signos que indican mejoría de la enfermedad
DHA y EPA	precursores de resolvina y protectinas	controla la magnitud y dur ación de la inflamación	modula la inflamación por el amiloide
	DHA inhibe la apoptósis neuronal	función cognitiva	mej or a procesos de aprendizaj e y memoria
Vitamina E	▶ antioxidante	atrapa radicales libres	ralentiza progresión de la enfermedad
Vit. B ₉ , Vit. B ₁₂ Vit. B ₆ y Colina (B ₂)	▶ metabolismo homocisteina	metabolismo mielina, neuro- transmisores y fosfolipidos de membrana	modula la inflamación por el amiloide
Fosfolípidos, gangliósidos, DHA y colina	formación de membranas neuronales	formación de membranas neuronales	mej ora función neuronal y cognitiva
Colina	neurotransmisor	▶ función cognitiva	mejora procesos de aprendizaje y memoria

Respuesta a señal de alarma


(Estrés oxidativo, isquemia-reperfusión y otras señales de daño)

DHA y Neuroprotectina D-1 (NPD-1)

Efecto de ácidos grasos poliinsaturados sobre el cerebro

Recomendaciones de ingesta dietaria de ácidos grasos para adultos

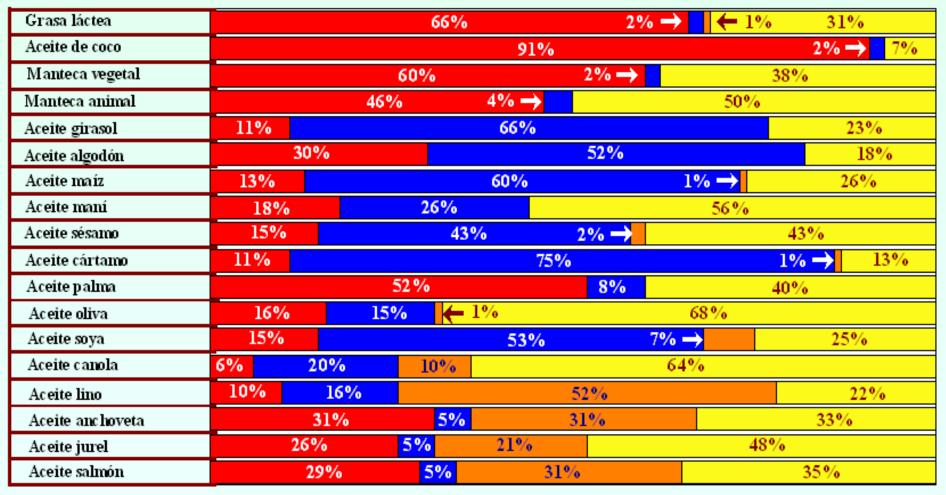
Ácidos Grasos (AG)	Recomendación
Ingesta total de AG	20-35% VCT
AG Saturados (AGS)	10% VCT
AG Monoinsaturados (AGMI)	9-13% VCT (diferencia)
AG Poli-insaturados (AGP) (AL + ALA + EPA + DHA)	6-11% VCT
AGP n-6	2.5-9% VCT (2-3% AL)
AGP n-3	0.5-2% VCT EPA+DHA (0.250-2g/día)
AGTrans	<1% VCT
Colesterol	<300 mg/día FAO. 2

Recomendaciones de ingesta dietaria de ácidos grasos para lactantes (0-24 meses) y niños (2-18 años)

Ácidos Grasos (AG)	Grupo etáreo	Recomendación
Ingesta total de AG	0-6 meses 0-24 meses 2-18 años	40-60% VCT (leche materna) 35% VCT 25-35% VCT
AG Saturados	2-18 años	8% VCT
AG Monoinsaturados		Diferencia
AG Poli-insaturados (AGPI)	6-24 meses 2-18 años	<15% VCT 11% VCT
AL (C18:2 n-6) & ALA (C18:3 n-3)	0-24 meses	Esenciales e Indispensables

Recomendaciones de ingesta dietaria de ácidos grasos para lactantes (0-24 meses) y niños (2-18 años)

Ácidos Grasos (AG)	Grupo etáreo	Recomendación
AGPI n-6		
Ácido Araquidónico (C20:4 n-6, AA)	0-6 meses	0.2-0.3% VCT (leche materna)
AL (C18:2 n-6)	0-6 meses 6-12 meses 12-24 meses	Composición leche materna 3-4.5% VCT 3-4.5% VCT
AGPI n-3		
ALA (C18:3 n-3)	0-6 meses 6-24 meses	0.2% VCT 0.4-0.6% VCT
DHA	0-6 meses 6-24 meses	0.1-0.18% VCT 10-12 mg/kg
EPA+DHA	2-4 años 4-6 años 6-10 años	100-150 mg 150-200 mg 200-250 mg
AG Trans	2-18 años	<1% CVT


Recomendaciones de ingesta dietaria de ácidos grasos durante el embarazo y lactancia

Ácidos Grasos (AG)	Recomendación
DHA	200 mg/día
DHA+EPA	300 mg/día
AA	800 mg/día (máximo)

Composición porcentual de algunos aceites, grasas y materias grasas de consumo habitual en diferentes países

Grasa o Aceite

Contenido de ácidos grasos normalizado al 100%

Fuentes alimentarias tradicionales de AGPICL ω-3

Alimento	EPA mg/100 g	DPA mg/100 g	DHA mg/100 g	EPA+DHA mg/100 g
Anchoveta	763	41	1292	2055
Arenque (atlántico)	909	71	1105	2014
Salmón (cultivo*)	862	393	1104	1966
Salmón (salvaje)	411	368	1429	1840
Jurel (Caballa) atlántico	504	106	699	1203
Pescado azul	323	709	665	988
Sardina atlántica	473	0	509	982
Trucha	259	235	677	936
Blanquillo	172	143	733	905
Pez espada	127	168	772	899
Albacora	233	18	629	862
Mejillones	276	44	506	782

Base de datos USDA. USA 2014

Fuentes alimentarias tradicionales de AGPICL ω-3

Alimento	EPA mg/100 g	DPA mg/100 g	DHA mg/100 g	EPA+DHA mg/100 g
Robalo rayado	169	0	585	754
Tiburón	258	89	431	689
Abadejo del atlántico	91	28	451	542
Ostras	274	16	210	484
Jurel (caballa) rey	174	22	227	401
Atún	91	17	237	328
Pargo	48	22	273	321
Platija y Lenguado	168	34	132	300
Almejas	138	104	146	284
Mero	35	17	213	248
Fletan*	80	20	155	235
Langosta	117	6	78	195

Base de datos USDA. USA 2014

Reporte

Joint FAO/WHO Expert consultation on the risks and benefits of fish consumption

Roma, 25 - 29 de Enero 2010

Análisis del efecto de dioxinas y metil mercurio y del aporte de EPA y DHA en el cuociente intelectual de niños. Valores obtenidos a partir de 93 peces diferentes

Pesquerías agotadas en Chile

Anchoveta

Agotada:

V a X región

Se hace harina y aceite de pescado y para consumo en conserva

TP = 14 cm

Merluza común

Agotada:

IV a X región

Amenazada por la sobrepesca y depredadores naturales como la jibia

TP = 35 cm

Sardina española

Agotada:

XV a IVregión

Forma grandes cardúmenes junto a anchoveta y en ocasiones, se encuentra asociada con caballa, jurel y bonito

TP = 26 cm

Alfonsino

Agotada:

XV a XII región

Pez de agua profundas. Alcanza su primera madurez a los 8 años. Era capturado por flotas industriales de arrastre

TP = 35 cm

Congrio dorado

Agotada:

Chiloé a XI región v XI a XII

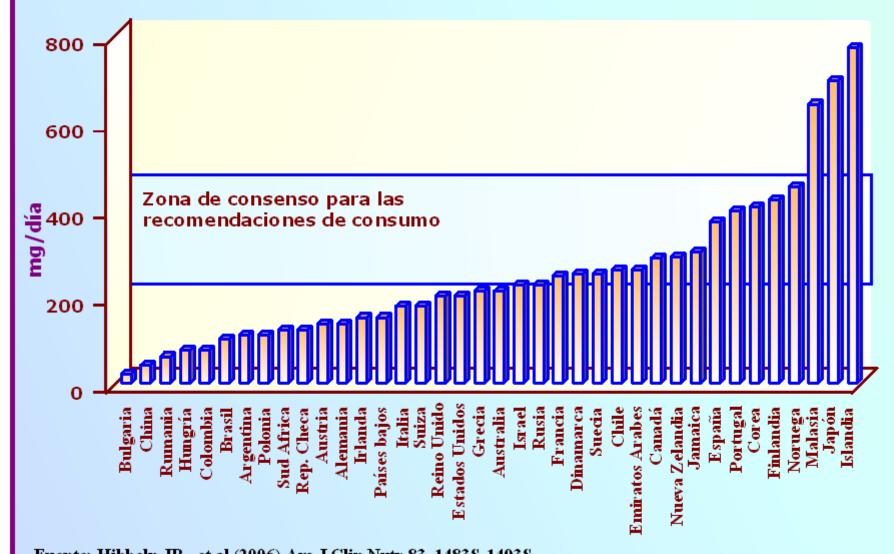
Se distribuye desde la IV Región al Cabo de Hornos, principalmente de la X al sur

TP = 80 cm

Besugo

Agotada:

III a X región


Habita en aguas profundas. Acanza la talla adecuada para su pesca a los 12 años

TP = 34 cm

Fuente: Subsecretaria de Pesca. Chile

Fuente: Hibbeln JR., et al (2006) Am J Clin Nutr 83, 1483S-1493S

Nutrients 2014, 6(11), 4918-4934; doi:10.3390/nu6114918

Article

Polyunsaturated Fatty Acid Composition of Maternal Diet and Erythrocyte Phospholipid Status in Chilean Pregnant Women

Karla A. Bascuñán ^{1,∗} [□], Rodrigo Valenzuela ¹ [□], Rodrigo Chamorro ¹ [□], Alejandra Valencia ¹ [□], Cynthia B Claudia Puigrredon ² [□], Jorge Sandoval ² [□] and Alfonso Valenzuela ³ [□]

+ Authors' affiliations

Received: 11 September 2014 / Revised: 14 October 2014 / Accepted: 24 October 2014 / Published: 7 November 20

(This article belongs to the Special Issue Nutrition in Pregnancy)

Download PDF [504 KB, uploaded 7 November 2014]

Browse Figure

Abstract

Chilean diets are characterized by a low supply of n-3 polyunsaturated fatty acids (n-3 PUFA), which are critical r pregnancy and lactation, because of their role in brain and visual development. DHA is the most relevant n-3 PUFA We evaluated the dietary n-3 PUFA intake and erythrocyte phospholipids n-3 PUFA in Chilean pregnant women. pregnant women (20-36 years old) in the 3rd-6th month of pregnancy were included in the study. Dietary assessn applying a food frequency questionnaire, and data were analyzed through the Food Processor SQL® software. erythrocyte phospholipids were assessed by gas-liquid chromatography. Diet composition was high in saturated fat and PUFA, high in n-6 PUFA (linoleic acid) and low in n-3 PUFA (alpha-linolenic acid and DHA), with imbalance PUFA ratio. Similar results were observed for fatty acids from erythrocyte phospholipids. The sample of Chilean pr

showed high consumption of saturated fat and low consumption of n-3 PUFA, which is reflected in the low D

Table 4. Fatty acid intake according to food groups.

Food Groups	Total Fat (g)	Total SAFA (g)	Total MUFA (g)	Total PUFA (g)
Cereals	9.7 (7.0–12.7)	1.7 (1.3–2.4)	1.0 (1.5-2.2)	1.2 (0.7–1.8)
Fruits and Vegetables	1.2 (0.7–1.6)	0.1 (0.07-0.17)	0.05 (0.02-0.07)	0.2 (0.1-0.3)
Dairy	8.4 (4.4–18.0)	4.9 (2.8–10.8)	1.9 (0.9-4.3)	0.2 (0.1-0.6)
Meats and Eggs	12.5 (8.3–20.4)	4.4 (2.8-6.7)	2.8 (1.8-5.7)	0.9 (0.5-1.2)
Fish and Seafood	0.7 (0.2–1.6)	0.17 (0.008-0.064)	0.2 (0.01-0.4)	0.1 (0.01-0.2)
Legumes	0.18 (0.4-0.39)	0.01 (0.006-0.04)	0.02 (0.007–0.06)	0.1 (0.02-0.2)
High-Lipid Foods	9.9 (3.7–14.4)	1.2 (0.5-1.8)	5.0 (2.5-7.6)	1.6 (0.6–3.7)
Oils and Fats	25 (4.9–36.2)	4.2 (2.2-6.4)	4.7 (3.2–9.1)	9.6 (3.9–15.0)
Sugar, Alcohol and Processed Foods	3.4 (0.84-8.1)	0.9 (0.2–3.0)	0.01 (0-0.02)	0.004 (0-0.09)

Table 5. Fatty acid composition of maternal erythrocyte membrane phospholipids

Fatty Acids a	Chilean Women ^b	Chinese Women ^c	Belgium Women ^d	USA Women ^e
Total SAFA	52.2 ± 2.8	46.4 (44.7–47.2)	46.0 ± 3.3	**
Total MUFA	13.3 ± 1.5	14.5 ± 3.5	12.7 ± 1.3	妆
Total PUFA	35.4 ± 3.3	36.6 (34.1–38.7)	38.2 ± 3.5	*
Total n-6 PUFA	28.6 ± 3.6	26.5 (24.6–28.3)	冰	27.91 ± 5.39
Total n-3 PUFA	6.8 ± 1.0	9.8 (8.6–11.8)	冰	6.96 ± 2.27
18:2, n-6 (LA)	14.6 ± 3.4	15.0 ± 4.6	19.1 ± 3.2	9.0 ± 1.49
18:3, n-3 (ALA)	1.2 ± 0.4	*	0.22 ± 0.14	0.13 ± 0.06
20:4, n-6 (AA)	13.2 ± 1.8	7.3 (5.7–8.5)	8.4 ± 1.8	13.09 ± 3.3
20:5, n-3 (EPA)	1.6 ± 0.5	1.9 (1.7-2.2)	0.50 ± 0.31	0.30 ± 0.17
22:6, n-3 (DHA)	3.6 ± 0.6	5.6 (4.1-8.1)	4.8 ± 1.3	4.74 ± 1.68
n-6/n-3 PUFA Ratio	4.3 ± 1.0	2.6 (2.1-3.2)	非	4.71 ± 2.8

Programa de Alimentación Complementaria para Embarazadas y Nodrizas

- El Ministerio de Salud incorporó una bebida láctea con EPA
 + DHA en el Programa Nacional de Alimentación
 Complementaria
- Nombre de la bebida "Purita Mamá"
- Programa de carácter universal que se inicia en el año 2008 (agosto)
- Bebida láctea:

Fortificada con 10 vitaminas y cuatro minerales

10% de materia grasa

79 mg EPA + DHA

¿Cómo se prepara Purita Mamá?

Instrucciones para preparar 1 porción (200ml)

Colocar agua hervida (tibla) hasta la mitad de la taza o vaso y agregar 1 medida rasa de Purita memà (3 cucheradas rasas).

Revolver hasta disolver La mescla.

Agregor agua hervida (tibla) hasta completar la porción de 200 ml.

Una medida rasa = 25 gramos de Purita Marná

Recomendaciones

Mantener la bolsa de este producto siempre bien cerrada y en un lugar fresco y seco.

Purita Mamá jamás debe hervirse para no alterar su valor nutritivo.

¿Cómo me beneficio al tomar Purita Mamá?

- Cuidas tu peso y proteges tu corazón.
- Favoreces el desarrollo del cerebro y la visión de tu bebé.
- Cubres la mayor necesidad de Vitaminas y Minerales que el embarazo y el amemantamiento te derrendan

PURITA NAMA, recuerda asistir a tus controles de salud.

Si tienes indicado tomar Hierro, recuerda que este mineral es esencial para prevenir la anemía, causante entre otros problemas, del nacimiento de niños con bajo peso.

El mejor alimento para tu bebé es la leche materna, el mejor alimento para ti es PURITA MAMA.

Bebida láctea para embarazadas y madres que amamantan

Con Acidos Grasos Omega 3

Consumir al menos 2 porciones diarias. El embarazo y el período de amamantamiento son etapas donde requieres especiales cuidados en tu alimentación.

Si eres beneficiaria del Programa
Nacional de Alimentación
Complementaria, te queremos
dar una buena noticia:
A partir de ahora, tendrás
derecho a recibir un producto
formulado y desarrollado solo
para ti: PURITA MAMÁ.

¿Qué es PURITA MAMÁ?

PURTA MANÁ es un nuevo alimento diseñado para complementar las necesidades nutricionales de la emberazada y la madre que amamenta.

¿Cuáles son sus características?

- Es una bebida láctea semidescremada.
- · Adicionada con grasa omega 3 denominada DHA.
- Fortificada con vitaminas y minerales.
- Instantánea,
- Con delicado sabor a Vainitia.

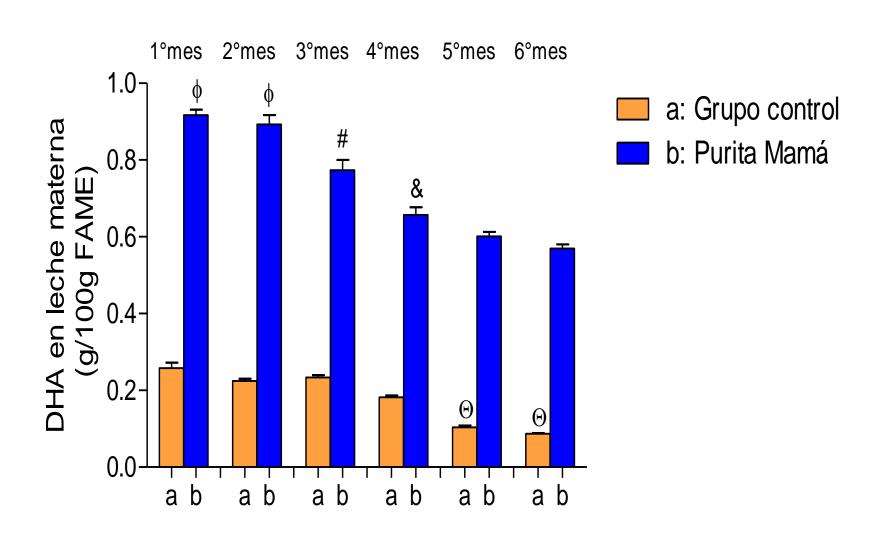
¿Qué es el DHA?

Es una grana omega 3 que es muy importante para el desarrollo del cerebro y la visión del niño en gestación y del recién nacido en crecimiento. El niño en gestación recibe DHA a través de la placenta durante el embarago y el recien nacido lo hace a través de la leche materna durante el amamentamiento.

Falta estructura quimica DHA (interacción)

Programa de Alimentación Complementaria para Embarazadas y Nodrizas

- EL programa distribuye 1 kg de bebida láctea al mes (embarazadas)
- Permite preparar 260 mL/día al 12,5%
- Aporta 79 mg EPA (19 mg) + DHA (60 mg)
- Para nodrizas se distribuyen 2 kilos de bebida láctea al mes
- Permite preparar 500 mL/día al 12,5%
- Aporta 158 mg EPA (38 mg) + DHA (120 mg)
- Producto saborizado


Política de Beneficios Purita –mamá a la embarazada

Datos en Publicación

- Purita mamá aporta entre el 75 y 95 del DHA que consume diariamente una mujer embarazada y nodriza
- Es muy difícil lograr un incremento en la fuente tradicional de DHA(pescado graso y no frito)
- •La dieta de las mujeres (embarazadas y nodrizas) tiene un alto contenido de ácido linoleico (C18:2 n-6, AL) y un bajísimo contenido de ácido alfa-linolénico (C18:3 n-3, ALA)
- Sin consumir Purita Mamá los niveles de DHA en leche materna y eritrocitos son muy bajos.
- Solo el consumo de Purita Mamá (una o dos porciones día) permite incrementar los niveles de DHA en leche materna y eritrocitos (p<0.05).

Datos en Publicación

Beneficios:

Mejora el desarrollo mental y psicomotor

Mejora el CI del recién nacido Optimiza el período gestacional

Menor depresión post-parto

Embarazo

Investigaciones:

McNamara et al. Docosahexaenoic acid supplementation increases prefrontal cortex activation during sustained attention in healthy boys: a placebo-controlled, dose-ranging, functional magnetic resonance imaging study. Am J Clin Nutr. 2010;91:1060-7.

Conclusión: Mejor desarrollo cerebral

Courville et al. Consumption of a DHA-containing functional food during pregnancy is associated with lower infant ponderal index and cord plasma insulin concentration. Br J Nutr. 2011;106:208-12.

Conclusión: Mejor tolerancia a la insulina y menores riesgos metabólicos

Colombo J et al. Maternal DHA and the development of attention in infancy and toddlerhood. Child Dev. 2004;75:1254-67.

Conclusión: los niveles de DHA de la madre, tienen una directa relación con el desarrollo cerebral de su hijo

Beneficios:

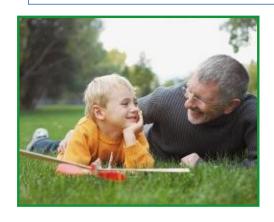
Mejora el desarrollo mental y psicomotor

Mejora la capacidad de resolución de problemas Mejora las capacidades cognitivas

Mejora el score Peadbody, un predictor de éxito escolar

Lactancia y niños

Investigaciones:


Ryan A and Nelson E. Assessing the effect of docosahexaenoic acid on cognitive functions in healthy, preschool children: a randomized, placebo-controlled, double-blind study. Clin Pediatr (Phila). 2008;47:355-62.

Conclusión: Mejor capacidad de apredizaje en niños pre-escolares

Milte et al. Eicosapentaenoic and docosahexaenoic acids, cognition, and behavior in children with attention-deficit/hyperactivity disorder: a randomized controlled trial. Nutrition. 2012;28:670-7. Conclusión: los AGPICL omega-3, y epsecialmente el DHA favorecen una mejor conducta y rendimiento

Yui K et al. Effects of large doses of arachidonic acid added to docosahexaenoic acid on social impairment in individuals with autism spectrum disorders: a double-blind, placebo-controlled, randomized trial. J Clin Psychopharmacol. 2012;32:200-6.

Conclusión: Mejor capacidad de sociabilizaicón, y una asociación directa del DHA en el efecto

Beneficios:

Promueve beneficios cardiovasculares

Triglicéridos

Colesterol-HDL

LDL aterogénicas

Presión arterial

Proteje la salud y función visual

Jóvenes y adultos

Investigaciones:

Nozue T et al. Low serum docosahexaenoic acid is associated with progression of coronary atherosclerosis in statin-treated patients with diabetes mellitus: results of the treatment with statin on atheroma regression evaluated by intravascular ultrasound with virtual histology (TRUTH) study. Cardiovasc Diabetol. 2014;13:13.

Conclusión: Bajos niveles de DHA en sangre se asocian a mayor riesgo cardiovascular

Singhal et al. Docosahexaenoic acid supplementation, vascular function and risk factors for cardiovascular disease: a randomized controlled trial in young adults. J Am Heart Assoc. 2013;2:e000283.

Conclusión: Reducción de los triglicéridos plasmáticos

Stonehouse et al. DHA supplementation improved both memory and reaction time in healthy young adults: a randomized controlled trial. Am J Clin Nutr. 2013;97:1134-43.

Conclusión: Mejoría significativa en la memoria y tiempo de reacción en sujetos jóvenes

Beneficios:

aumento de la concentración tisular de DHA se correlaciona con:

Menor riesgo de demencia (47%) Menor riesgo de

tau

De placas amiloideas

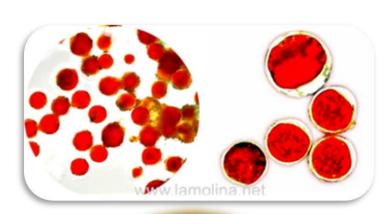
De ovillos de proteínas

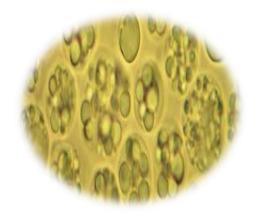
desarrollo de Alzheimer

Adultos y Adultos Mayores

Investigaciones:

Pottala et al. Higher RBC EPA + DHA corresponds with larger total brain and hippocampal volumes: WHIMS-MRI study. Neurology. 2014;82:435-42.

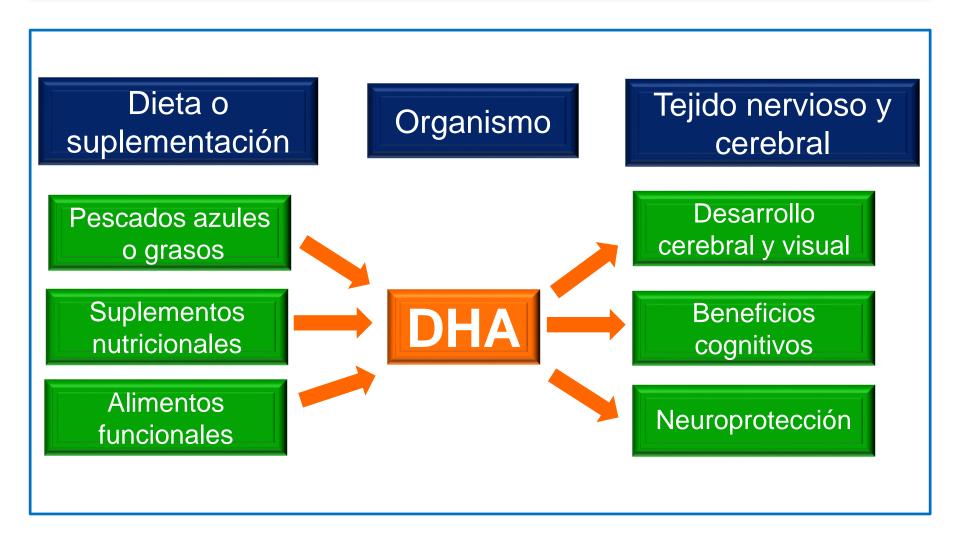

Conclusión: Los niveles de DHA en los eritrocitos se asocian directamente con una conservación del volumen cerebral (mujeres post-menopáusicas)


Kotani S, et al. Dietary supplementation of arachidonic and docosahexaenoic acids improves cognitive dysfunction. Neurosci Res. 2006;56:159-64.

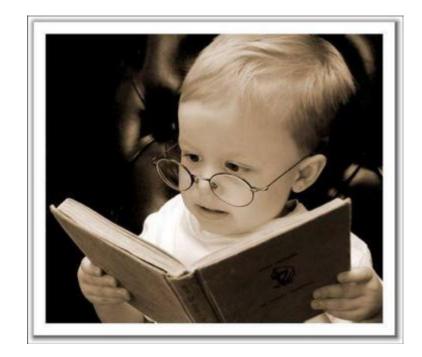
Conclusión: Mejoría de las capacidades cognitivas en ancianos

Schaefer EJ et al. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch Neurol. 2006;63:1545-50. Conclusión: elevados niveles de DHA en sangre, pueden disminuir hasta en un 47% el riesgo de desarrollar enfermedad de Alzheimer

Micro-algas productoras de DHA



Crypthecodinium


Schizochytrium

Formas posibles de incorporar DHA al organismo y beneficios a nivel cerebral

Hechos

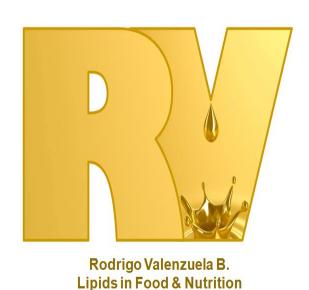
- Las mujeres embarazadas y en lactancia tienen frecuentemente una ingesta inadecuada de AGPI (varios estudios de ingesta)
- Los bebés que consumen DHA durante la última parte del embarazo y la lactancia muestras CI y funciones mentales mejoradas (varios autores)
- □ La productividad económica se correlaciona con el CI y la nutrición durante la infancia temprana (varios autores)

Supuestos (o especulaciones)

- Un mínimo de 1 punto de CI se gana a través de un programa que provee DHA
- ☐ La relación económica entre el aumento del CI y la productividad económica es lineal
- ☐ El ingreso promedio de un país es de USD10,000 per cápita por año
- ☐ El costo en DHA por beneficiario es de USD 30
- Los costos del DHA están agregados a un programa existente
- Vida Activa = 30 años
- ☐ Tasa de Interés = 4% por año

Supuestos (o especulaciones)

- □ 1% ingreso extra = USD100/año
- Valor Futuro de USD100/año @
 4% de interés sobre 30 años =
 USD5,608
- Tasa de retorno: 187 veces la inversión



HACIA DONDE VAMOS:

- Incrementar el consumo de DHA en la población Desarrollar un marco regulatorio que permita formular alimentos con n-3(EPA+DHA) en toda América Latina
- Continuar desarrollando alimentos con DHA
- Uso de nuevas tecnologías (micro y nano-encapsulación)
- No confundir alimentos "con DHA" con nutraceúticos o suplementos nutricionales
- Educación a los consumidores respecto al tema
- Control respecto a la publicidad engañosa

Grasas y Aceites en la Nutrición Humana

Dr. Rodrigo Valenzuela B. rvalenzuelab@med.uchile.cl

